Sodium-Coupled Neutral Amino Acid Transporter 1 (SNAT1) Modulates L-Citrulline Transport and Nitric Oxide (NO) Signaling in Piglet Pulmonary Arterial Endothelial Cells
نویسندگان
چکیده
RATIONALE There is evidence that impairments in nitric oxide (NO) signaling contribute to chronic hypoxia-induced pulmonary hypertension. The L-arginine-NO precursor, L-citrulline, has been shown to ameliorate pulmonary hypertension. Sodium-coupled neutral amino acid transporters (SNATs) are involved in the transport of L-citrulline into pulmonary arterial endothelial cells (PAECs). The functional link between the SNATs, L-citrulline, and NO signaling has not yet been explored. OBJECTIVE We tested the hypothesis that changes in SNAT1 expression and transport function regulate NO production by modulating eNOS coupling in newborn piglet PAECs. METHODS AND RESULTS A silencing RNA (siRNA) technique was used to assess the contribution of SNAT1 to NO production and eNOS coupling (eNOS dimer-to-monomer ratios) in PAECs from newborn piglets cultured under normoxic and hypoxic conditions in the presence and absence of L-citrulline. SNAT1 siRNA reduced basal NO production in normoxic PAECs and prevented L-citrulline-induced elevations in NO production in both normoxic and hypoxic PAECs. SNAT1 siRNA reduced basal eNOS dimer-to-monomer ratios in normoxic PAECs and prevented L-citrulline-induced increases in eNOS dimer-to-monomer ratios in hypoxic PAECs. CONCLUSIONS SNAT1 mediated L-citrulline transport modulates eNOS coupling and thus regulates NO production in hypoxic PAECs from newborn piglets. Strategies that increase SNAT1-mediated transport and supply of L-citrulline may serve as novel therapeutic approaches to enhance NO production in patients with pulmonary vascular disease.
منابع مشابه
Prolonged hypoxia augments L-citrulline transport by system A in the newborn piglet pulmonary circulation.
AIMS Pulmonary arterial endothelial cells (PAECs) express the enzymes needed for generation of l-arginine from intracellular l-citrulline but do not express the enzymes needed for de novo l-citrulline synthesis. Hence, l-citrulline levels in PAECs are dependent on l-citrulline transport. Once generated, l-arginine can be converted to l-citrulline and nitric oxide (NO) by the enzyme NO synthase....
متن کاملMaternal hypercholesterolemia in pregnancy associates with umbilical vein endothelial dysfunction: role of endothelial nitric oxide synthase and arginase II.
OBJECTIVE Human pregnancy that courses with maternal supraphysiological hypercholesterolemia (MSPH) correlates with atherosclerotic lesions in fetal arteries. It is known that hypercholesterolemia associates with endothelial dysfunction in adults, a phenomenon where nitric oxide (NO) and arginase are involved. However, nothing is reported on potential alterations in the fetoplacental endothelia...
متن کاملDysregulation of l-arginine metabolism and bioavailability associated to free plasma heme
Severe Plasmodium falciparum malaria is associated with hypoargininemia, which contributes to impaired systemic and pulmonary nitric oxide (NO) production and endothelial dysfunction. Since intravascular hemolysis is an intrinsic feature of severe malaria, we investigated whether and by which mechanisms free heme [Fe(III)-protoporphyrin IX (FP)] might contribute to the dysregulation of L-argini...
متن کاملAmino acids as modulators of endothelium-derived nitric oxide.
To examine the mechanisms whereby amino acids modulate nitric oxide (NO) production and blood flow in the renal vasculature, chemiluminescence techniques were used to quantify NO in the renal venous effluent of the isolated, perfused rat kidney as different amino acids were added to the perfusate. The addition of 10(-4) or 10(-3) M cationic amino acids (l-ornithine, l-lysine, or l-homoarginine)...
متن کاملSelective targeting of nitric oxide synthase inhibitors to system y+ in activated macrophages.
Amino acid transport systems mediating uptake of nitric oxide (NO) synthase inhibitors were characterized in the murine macrophage cell line J774. Treatment of J774 cells with bacterial endotoxin (LPS, 1 microgram ml-1, 24 h) selectively increased the transport capacity for NG-monomethyl-L-[14C]arginine (L-NMMA), whereas transport of NG-nitro-L-[3H]arginine (L-NNA) was unaffected. Inhibition st...
متن کامل